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A new practical actuator-fault model is proposed by assuming that the actuator fault obeys a certain probabilistic
distribution. This article addresses the problem of a reliable fuzzy control for Takagi–Sugeno (T-S) fuzzy systems
with interval time-varying delays. By using a Lyapunov–Krasovskii approach, a sufficient condition for the
existence of a reliable controller is expressed by a set of linear matrix inequalities. Illustrative examples show the
effectiveness of the proposed design procedures.
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1. Introduction

Since the pioneering work of Takagi and Sugeno
(1985), Takagi–Sugeno (T-S) fuzzy model-based con-
trol has been intensively investigated. It combines the
flexible fuzzy logic theory and the fruitful linear system
theory into a unified framework to approximate
complex nonlinear systems, and thus becomes a
powerful tool to deal with modeling and control of
complex systems, including time-delay systems.
Meanwhile, it is well known that time delay often
appears in dynamic systems. It is an important source
of instability and degradation in control performance.
In recent years, the problems of stability and stabili-
zation of the T-S fuzzy systems with time delay have
attracted rapidly growing interests (Guan and Chen
2004, Chen et al. 2006, Lin et al. 2006, Yoneyama
2007, Peng et al. 2008, Tian et al. 2008, Li et al. 2009).

However, all the aforementioned results are yielded
by a system which assumes that all control components
of the controlled system are in good working condi-
tion. In fact, the performance of the closed-loop system
might degrade and become unstable when actuator
failures occur, as in many practical applications. To
improve system reliability and security, a reliable
control strategy is usually considered necessary, so
that the closed-loop system can operate well, even if
faults occur in some control components. Recently,
some results have appeared on designing reliable fuzzy
control systems (Chen and Liu 2004, Wu and Zhang
2005, 2006, Yang and Cai 2008). Reliable mixed L2/H2

fuzzy static output feedback control (Wu and Zhang
2005) and reliable H1 control based on fuzzy
Lyapunov function and multiple fuzzy Lyapunov
functions (Wu and Zhang 2006) have been investigated
for use with continuous-time or discrete-time nonlinear
systems without time delay. Chen and Liu (2004)
present a delay-independent criterion for time-varying
delay systems with actuator faults. Reliable control for
fuzzy descriptor systems and reliable nonuniform
sampling control are studied in Yang and Cai (2008),
and the references therein.

Most studies, with regard to reliable control, have
depicted the fault model as a scaling factor, such as, in
Wu and Zhang (2005), defining �l 2 � ¼

D
f�l ¼ diag�

½�l1�l2 , . . . ,�lq �, �li ¼ 0 or 1, i ¼ f1, 2, . . . , qg,�li ¼ 0
corresponds to the case of the i-th sensor outage, and
�li ¼ 1 denotes no fault in the i-th sensor. However, in
practical systems, because of actuators aging, zero
shift, electromagnetic interference, nonlinear amplifi-
cation in different frequency fields, etc., the faults vary
with circumstance and the components themselves in
many cases. It will be more reasonable if the fault scale
factor obeys a certain probabilistic distribution in an
interval. In fact, there are only two special cases if one
lets the factor �li ¼ 0 or 1. To the best of our knowl-
edge, there are few reliable control results with
actuator-fault models which satisfy a certain
probabilistic distribution. This has motivated us to
investigate problems which more closely resemble real
systems.
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The main contribution of this article is that a more

practical and general actuator-fault model is estab-

lished which covers the cases of normal operation,
partial degradation, outage and in which the fault

obeys a certain probabilistic distribution.
Furthermore, a less conservative delay-dependent reli-

able fuzzy controller is obtained by constructing a new
Lyapunov function and using the convexity of the

matrix functions in the results derived. The system

descriptions and problem formulation are given in
Section 2. In Section 3, a linear matrix inequality

(LMI)-based method for the design of reliable fuzzy
controllers is presented. A numerical example is

provided to demonstrate the effectiveness of the
proposed method in Section 4. Finally, conclusions

are drawn in Section 5.

2. Problem formulation

Consider the T-S fuzzy model with time-varying delay.

The i-th rule of the model is described by the following
IF-THEN form:

Ri: IF �1ðtÞ is W
i
1 , . . . , �nðtÞ is W

i
n,

THEN

_xðtÞ ¼ ðAiþDAiðtÞÞxðtÞþ ðAdiþDAdiðtÞÞxðt� �ðtÞÞþBiuðtÞ,

xðtÞ ¼�ðtÞ t2 ½��2,0�,

�
ð1Þ

where xðtÞ 2 R
n is the state vector; uðtÞ 2 R

m is the

input vector; �ðtÞ is a continuous vector-valued initial

function; �ðtÞ denotes the state delay and satisfies
�1 � �ðtÞ � �2; Wj

i is the fuzzy set; �j ðtÞ ð j ¼ 1, 2, . . . , nÞ

are the premise variables; Ai, Adi, and Biði 2
f1, 2, . . . , rg ¼

D
SÞ are constant matrices with compati-

ble dimensions; and DAiðtÞ and DAdiðtÞ are unknown
matrices of appropriate dimensions satisfying

½DAiðtÞDAdiðtÞ� ¼ HiFiðtÞ½E1iE2i�, ð2Þ

where Hi and Ejið j ¼ 1, 2, i 2 SÞ are known constant

matrices of appropriate dimensions and FiðtÞ is an
unknown matrix function with Lebesgue measurable

elements satisfying FT
i ðtÞFiðtÞ � I.

By using the center average defuzzifier, product
inference, and singleton fuzzifier, the global dynamics

of T-S fuzzy system (1) can be expressed as

_xðtÞ ¼
Pr
i¼1

hi½ðAi þ DAiðtÞÞxðtÞ

þðAdi þ DAdiðtÞÞxðt� �ðtÞÞ þ BiuðtÞ�,

xðtÞ ¼ �ðtÞ t 2 ½��2, 0�,

8>>><>>>: ð3Þ

where

hi ¼
!ið�ðtÞÞPr
i¼1 !ið�ðtÞÞ

, !ið�ðtÞÞ ¼
Yg
j¼1

Wi
jð�j ðtÞÞ,

and Wi
jð�j ðtÞÞ is the membership value of �j ðtÞ in Wi

j.
Therefore, hið�ðtÞÞ � 0,

Pr
i¼1 hið�ðtÞÞ ¼ 1.

We consider the following fuzzy state feedback
controller for the system (3):

uðtÞ ¼
Xr
j¼1

hjKjxðtÞ, ð4Þ

where Kj 2 R
m�n are feedback gain matrices to be

determined.
Let uFðtÞ represent the control input after faults

have occurred. Then, the following fault model is
adopted for this study:

uFðtÞ ¼ �uðtÞ

¼
Xm
i¼1

Xr
j¼1

hj�iCiKjxðtÞ, ð5Þ

where � ¼ diagf�1, . . . , �mg with �iði ¼ 1, . . . ,mÞ are m
unrelated random variables. It is assumed that �i has
mathematical expectation �i and variance �2i , respec-
tively, and Ci ¼ diagf0, . . . , 0|fflfflfflffl{zfflfflfflffl}

i�1

, 1, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
m�i

g. For

convenience, we define �� ¼ diagf�1, . . . ,�mg and
D ¼ diagf�1, . . . , �mg.

Remark 1: There are some papers discussing prob-
abilistic sensor failures for discrete systems. In Wang
et al. (2005, 2009, 2006) and Hounkpevi and Yaz
(2007), the Bernoulli distributed variable 	 is used to
describe sensor failure, where 	 ¼ 0 and 1 represent the
meaning of complete failure or completely normal. In
He et al. (2009) and Wei et al. (2009), the authors
assumed that the random variables 	 taking values in
the interval 0, 1½ �, 05 	5 1 means partial failure.
However, a fact has been omitted by most researchers
when the sensors/actuators have faults, they may result
in backward or forward drift, in this case, the sensors/
actuators output might be bigger than the real output,
which is normal in practical systems; however, it has
not drawn much attention till now.

Remark 2: Equation (5) describes a phenomenon of
actuator drift by a random matrix � satisfying a
certain probabilistic distribution in an interval, �i
belongs to the interval 0, ��

� �
with �� � 1. �i ¼ 0 means

complete failure of the i-th actuator; �i ¼ 1 means the i-
th actuator is in good working condition; 05 �i 5 1
means partial failure of the i-th actuator; and �i 4 1
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means the actuator-amplifier has drifted forward. It

should be noted that, in many cases, the gains of

actuators could be larger than normal cases because of

the surrounding influence or actuator-amplifiers them-

selves. Therefore, the mathematical expectation �i of

random variance �i, similar to the scaling factor in Wu

and Zhang (2007) should be defined as 05�i 5 ��i,

where ��i � 1. Furthermore, �i denotes the gain of

actuators fluctuation levels because of influence of all

the factors acting on actuators.

Remark 3: �i ¼ E �if g represents the failure rate of the
i-th actuator. It should be noted that with the

consideration of the influence of all the factors,

�i ¼ 1 does not mean the i-th actuator is always in

good working condition, the values of 
i can be greater

or smaller than 1. Simultaneously, �i ¼ 0 does not

mean the complete failure of the i-th actuator. In

particular, if the case �i ¼ 0 and �i ¼ 0, simulta-

neously, it stands for an entire missing of signals, and

�i ¼ 1, �i ¼ 0 indicates intactness. In fact, actuator-

amplifier backward or forward drift usually occurs in

practical situations, while complete failure or intact-

ness are two special cases.

By combining Equations (3) and (5), we obtain the

following closed-loop system as follows:

_xðtÞ ¼
Xr
i¼1

Xr
j¼1

hihj ½ðAiþDAiðtÞÞxðtÞ

þ ðAdiþDAdiðtÞÞxðt� �ðtÞÞ þBi�KjxðtÞ�

¼
Xr
i¼1

Xr
j¼1

hihj ðAiþBi
��Kj ÞxðtÞ þBið�� ��ÞKjxðtÞ

�
þAdixðt� �ðtÞÞ þDAiðtÞxðtÞ þDAdiðtÞxðt� �ðtÞÞ

�
,

ð6Þ

For convenience, we define �Aij ¼ Ai þ Bi
��Kj and

�Bij ¼ Bið�� ��ÞKj, GðtÞ ¼ DAiðtÞ þ DAdiðtÞxðt� �ðtÞ,
then Equation (6) can be rewritten as

_xðtÞ¼
Xr
i¼1

Xr
j¼1

hihj ½ �AijxðtÞþ �BijxðtÞþAdixðt� �ðtÞÞþGðtÞ�:

ð7Þ

The objective of this study is to develop a reliable

fuzzy controller for the closed-loop system considering

the stochastic-fault model described by Equation (7).

For this purpose, the following lemma derived from

Jessen’s inequality and definitions are introduced.

Lemma 1 (Gu et al. 2003): For any constant matrix

R ¼ RT 2 R
n�n, R4 0, scalars ��, and vector function

_x : ½�rM, 0� ! R
n such that the following integration is

well defined, it holds that

� ��

Z t

t� ��

_xTðtþ sÞR _xðtþ sÞds

�
xðtÞ

xðt� ��Þ

� 	T
�R R

� �R

� 	
xðtÞ

xðt� ��Þ

� 	
: ð8Þ

Lemma 2 (Tian and Peng 2006): Suppose M, N,

and � are constant matrices of appropriate

dimensions. Then

ð�ðtÞ � �1ÞMþ ð�2 � �ðtÞÞNþ�5 0 ð9Þ

is true for any �ðtÞ 2 ½�1 �2� if and only if

ð�2 � �1ÞMþ�5 0, ð10Þ

ð�2 � �1ÞNþ�5 0: ð11Þ

Definition 1: The system (7) is said to be exponen-

tially stable in the mean-square sense, if there exist

constants �4 0, �4 0, such that t4 0,

E xðtÞ


 

2n o

� �e��t sup
��25s50

�ðsÞ


 

� �

: ð12Þ

Definition 2: For a given function V : Cb
F0
ð½��2, 0�,

RnÞ � S, its infinitesimal operator L (Mao 2002) is

defined as

LVðxtÞ ¼ lim
D!0þ

1

D
½EðVðxtþDjxtÞ � VðxtÞÞ�: ð13Þ

3. Main result

In this section, we aim to develop an innovative

approach to guarantee that the system (7) is exponen-

tially mean-square stable, and the controller Kj can be

derived from the following results.
Firstly, we consider the normal case of system (7),

i.e., DAiðtÞ ¼ DAdiðtÞ ¼ 0. In this case, system (7)

becomes

_xðtÞ ¼
Xr
i¼1

Xr
j¼1

hihj ½ �AijxðtÞ þ �BijxðtÞ þ Adixðt� �ðtÞÞ�:

ð14Þ

Theorem 1: For given scalars �1, �2, �i, �i and matri-

ces Kj ði, j 2 SÞ, the system (14) is exponentially mean-

square stable if there exist positive-definite matrices

Journal of the Chinese Institute of Engineers 635
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P, Qi, Riði ¼ 1, 2Þ, and Mlij, Nlijðl ¼ 1, 2, 3, 4, i, j 2 SÞ

such that LMIs (31)–(32) hold.

�iiðl Þ ¼
�ii �21

i ðl Þ

� �22
i

" #
5 0, ð15Þ

�ijðl Þ ¼
�ij þ�ji

��21
ij ðl Þ

� ��22
ij

" #
50 ðl ¼ 1, 2; i5 j 2 SÞ,

ð16Þ

where

�ij¼

�11 R1þN1ij �13 �M1ij

� �22 �23 �M2ijþN
T
4ij

� � �33 �M3ijþM
T
4ij�N

T
4ij

� � � �Q2�M4ij�M
T
4ij

266664
377775,

�21
i ¼ �l

ii �
T
i Cii

� �
, �22

i ¼diagf�ð�2��1ÞR2,�R,�eRg,
��21
ij ¼ �l

ijþ�l
ji �

T
ij �T

ji Cij Cji

h i
,

�22¼diagf�2ð�2��1ÞR2,�R,�R,�eR,�eRg,
�1

ij¼ð�2��1ÞMij, �2
ij¼ð�2��1ÞNij,

�11¼P �Aijþ �AT
ijPþQ1þQ2�R1,

�13¼PAdi�N1ijþM1ij,

�22¼�R1�Q1þN2ijþN
T
2ij,

�23¼�N2ijþM2ijþN
T
3ij,

�33¼�N3ij�N
T
3ijþM3ijþM

T
3ij,

�ij¼ R �Aij 0 RAdi 0
� �

,

Cij¼ C1ij, . . . ,Cmij

� �
,

Clij¼ �lRBiClKj 0 0 0
� �T

,

R¼ �21R1þð�2��1ÞR2,eR¼diagfR, . . . ,R|fflfflfflffl{zfflfflfflffl}
m

g:

Proof: Construct a Lyapunov–Krasovskii functional

candidate as

VðxtÞ ¼
X3
i¼1

ViðxtÞ,

V1ðxtÞ ¼ xTðtÞPxðtÞ,

V2ðxtÞ ¼

Z t

t��1

xTðsÞQ1xðsÞdsþ

Z t

t��2

xTðsÞQ2xðsÞds,

V3ðxtÞ ¼ �1

Z 0

��1

Z t

tþs

_xTðvÞR1 _xðvÞdvds

þ

Z ��1
��2

Z t

tþs

_xTðvÞR2 _xðvÞdvds:

From the definition of �, we can easily see that

E½Bið�� ��ÞKj � ¼ 0: ð17Þ

Also, we can have

E
Xr
i¼1

Xr
j¼1

Xr
k¼1

Xr
l¼1

hihj �BT
ijR

�Bkl

( )
� E

Xr
i¼1

Xr
j¼1

hihj �BT
ijR

�Bij

( )

¼ E
Xr
i¼1

Xr
j¼1

Xm
l¼1

hihj�
2
l K

T
j C

T
l B

T
i RBiClKj

( )
: ð18Þ

Using Lemma 1 and the infinitesimal operator (13)
for system (14), we have

LV1ðxtÞ ¼ E
Xr
i¼1

Xr
j¼1

hihj2x
TðtÞP½ �AijxðtÞþAdixðt� �ðtÞÞ�

( )
,

LV2ðxtÞ ¼ E xTðtÞðQ1þQ2ÞxðtÞ�
X2
i¼1

xTðt� �iÞQixðt� �iÞ

( )
,

LV3ðxtÞ ¼ E

�
_xTðtÞR _xðtÞ� �1

Z t

t��1

_xTðsÞR1 _xðsÞds

�

Z t��1

t��2

_xTðsÞR2 _xðsÞds

�
�E

Xr
i¼1

Xr
j¼1

hihj xTðtÞ �AT
ijR

�Aijþ
Pm
l¼1

�2l K
T
j C

T
l B

T
i RBiClKj

� 	�(
xðtÞ

þxTðt� �ðtÞÞAT
diRAdixðt� �ðtÞÞþ2xTðtÞ �AT

ijRAdixðt� �ðtÞÞ

þ
xðtÞ

xðt� �1Þ

� 	T
�R1 R1

R1 �R1

� 	
xðtÞ

xðt� �1Þ

� 	
�

Z t��1

t��2

_xTðsÞR2 _xðsÞds

��
:

Employing the free-weighting matrix method
(Wu et al. 2004, Yue and Han 2005), we haveXr

i¼1

Xr
j¼1

hihj2

TðtÞNij

�
xðt� �1Þ � xðt� �ðtÞÞ

�

Z t��1

t��ðtÞ

_xðsÞds

	
¼ 0, ð19Þ

Xr
i¼1

Xr
j¼1

hihj2

TðtÞMij

�
xðt� �ðtÞÞ � xðt� �2Þ

�

Z t��ðtÞ

t��2

_xðsÞds

	
¼ 0, ð20Þ

where


ðtÞ ¼ xTðtÞ xTðt� �1Þ xTðt� �ðtÞÞ xTðt� �2Þ
� �T

:

Note that

� 2
Xr
i¼1

Xr
j¼1

hihj

TðtÞNij

Z t��1

t��ðtÞ

_xðsÞds � ð�ðtÞ � �1Þ

�
Xr
i¼1

Xr
j¼1

hihj

TðtÞNijR

�1
2 NT

ij 
ðtÞ þ

Z t��1

t��ðtÞ

_xTðsÞR2 _xðsÞds,
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�2
Xr
i¼1

Xr
j¼1

hihj

TðtÞMij

Z t��ðtÞ

t��2

_xðsÞds� ð�2� �ðtÞÞ

�
Xr
i¼1

Xr
j¼1

hihj

TðtÞMijR

�1
2 MT

ij 
ðtÞþ

Z t��ðtÞ

t��2

_xTðsÞR2 _xðsÞds,

where Mij ¼ ½M1ijM2ijM3ijM4ij� and Nij ¼ ½N1ijN2ij

N3ijN4ij�.
Hence,

LVðxtÞ � E
Xr
i¼1

Xr
j¼1

hihj

TðtÞ �ijþ�T

ijR�ijþCij
eRCT

ij

h(
þð�ðtÞ� �1ÞNijR

�1
2 NT

ij þð�2� �ðtÞÞMijR
�1
2 MT

ij

i

ðtÞ

¼ E
Xr
i¼1

h2i 

TðtÞ �iiþ�T

iiR�iiþCii
eRCT

ii þð�ðtÞ� �1ÞNiiR
�1
2 NT

ii

n(
þð�2� �ðtÞÞMiiR

�1
2 MT

ii

�

ðtÞ

þ
Xr
i,j¼1

X
i5j

hihj

TðtÞ �ijþ�jiþ�T

ijR�ijþ�T
jiR�ji

n
þCij

eRCT
ij þCji

eRCT
ji þð�ðtÞ� �1ÞðNijþNjiÞR

�1
2 ðN

T
ij þNT

ji Þ

þð�2� �ðtÞÞðMijþMjiÞR
�1
2 ðM

T
ij þMT

ji Þ

o

ðtÞ

o
: ð21Þ

Using Schur complements and Lemma 2, it can be

shown that Equations (15) and (16) are the sufficient

conditions for guaranteeing

LVðxtÞ5 0: ð22Þ

From Equations (15), (16) and (21), the following

inequality can be concluded:

LVðxðtÞÞ5 � �minð�ijðl ÞÞEf

TðtÞ
ðtÞg, ð23Þ

where l ¼ 1, 2, i, j 2 S, and �min is the minimum

eigenvalue of �ijðl Þ.
Define a new function as

WðxtÞ ¼ etVðxtÞ: ð24Þ

Its infinitesimal operator L is given by

WðxtÞ ¼ e
tVðxtÞ þ etLVðxtÞ: ð25Þ

By the generalized Ito formula (Mao 2002), we can

obtain from Equation (25) that

EfWðxtÞg � EfWðx0Þg ¼

Z t

0

esEfVðxsÞgds

þ

Z t

0

esEfLVðxsÞgds: ð26Þ

Then, using a method similar to that used in Yue

and Han (2005), we can see that there exists a positive

number � such that for t4 0

EfVðxtÞg � � sup
��2�s�0

�ðsÞ


 

2n o

e�t: ð27Þ

Since VðxtÞ � f�minðPÞgx
TðtÞxðtÞ, it can be shown

from Equation (27) that for t � 0

EfxTðtÞxðtÞg � ���t sup
��2�s�0

�ðsÞ


 

2n o

, ð28Þ

where �� ¼ �=ð�minPÞ. Recalling Definition 1, the proof

can be completed.

Remark 4: Since the introduction of Lemmas 1 and 2,

the convexity of the matrix function is employed to

derive the criteria, which can avoid some conservatism

caused by enlarging �ðtÞ to �2 (Yue and Han 2005). For

example, in the proof, the time-varying delay �ðtÞ
appears in ð�ðtÞ � �1ÞNiiR

�1
2 NT

ii and ð�2 � �ðtÞÞ
MiiR

�1
2 MT

ii , by using the convexity property of the

matrix functions, Equation (21) is replaced by the

equivalent conditions Equations (15) and (16),

respectively.
If Bi ¼ 0ði 2 SÞ, the unforced system (14) can be

rewritten as

_xðtÞ ¼
Pr
i¼1

Pr
j¼1

hihj ½AijxðtÞ þ Adixðt� �ðtÞÞ�

xðtÞ ¼ �ðtÞ t 2 ½��2, 0�

:

8<: ð29Þ

The following result can be concluded directly from

Theorem 1.

Corollary 1: For given scalars �1, �2, system (29) is

asymptotically stable if there exist matrices P4
0, Qi 4 0, Ri 4 0 ði ¼ 1, 2Þ, Mi,Niði 2 SÞ of appropri-

ate dimensions, such that the following LMIs hold:

�̂i þ	i þ	T
i �̂l

i A
T
i R

T

� ð�2 � �1ÞR2 0

� ��R

264
3755 0

ðl ¼ 1, 2; i 2 SÞ, ð30Þ

where �̂i is derived by changing the items �Aij,Mlij and

Nlijðl ¼ 1, 2, 3, 4; i, j 2 SÞ into Ai,Mi and Ni from �ij in

Theorem 1, and

�̂1
i ¼ ð�2 � �1ÞMi, �̂2

i ¼ ð�2 � �1ÞNi,

Ai ¼ Ai 0 Adi 0
� �

,

	i ¼ 0 Ni Mi �Ni �Mi

� �
:

By a commonly used analytical method for param-

eter uncertainties, the following result can be obtained

for the robust stability of systems (7).

Theorem 2: For given scalars �1, �2,�i, �i and matrices

Kj ði, j 2 SÞ, the system (7) is exponentially mean-square

stable if there exist positive-definite matrices
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P, Qi, Ri ði ¼ 1, 2Þ, and Mlij,Nlijðl ¼ 1, 2, i, j 2 SÞ such
that LMIs (31)–(32) hold.

�iiðl Þ ¼

�ii �21
i ðl Þ �31

ii

� �22
i 0

� � �33
ii

264
3755 0, ð31Þ

�ijðl Þ ¼

�ij þ�ji
��21
ij ðl Þ �31

ij �31
ji

� ��22
ij 0 0

� � �33
ij 0

� � � �33
ji

266664
3777755 0

ðl ¼ 1, 2, i5 j 2 SÞ, ð32Þ

where

�31
ij ¼

HT
i P 0 HT

i R
T 0

"iiE1i 0 "iiE2i 0

" #T

,

�33
ij ¼ diagf�"iiI� "iiIg:

In the following, we propose to design the reliable
fuzzy controller gain Kj based on Theorem 1.

Theorem 3: For given scalars �i, �iði ¼ 1, 2Þ, and
�j, �j ð j 2 SÞ, the system (7) is exponentially mean-
square stable if there exist positive-definite matrices
X, ~Qi, ~Riði ¼ 1, 2Þ, and ~Mlij, ~Nlij,Yj ðl ¼ 1, 2, i, j 2 SÞ

such that LMIs (33) and (34) hold. Furthermore, the
reliable fuzzy controller gain Kj ¼ YjX

�1.

��ii �̂21
i ðl Þ �̂31

ii

� �̂22
i 0

� � �̂33
ii

264
3755 0, ð33Þ

��ijþ ��ji
�̂�ii21ðl Þ �̂31

ij �̂31
ji

� �̂�
22

ij 0 0

� � �̂33
ij 0

� � � �̂33
ji

26666664

3777777550 ðl¼ 1,2, i, j 2SÞ,

ð34Þ

where

��ij¼

��11
�R1þ �N1ij

��13 � �M1ij

� ��22
��23 � �M2ijþ �NT

4ij

� � ��33 � �M3ijþ �MT
4ij�

�NT
4ij

� � � � �Q2� �M4ij� �MT
4ij

266664
377775,

�̂21
i ¼

��l
ii

��T
ii Cii

� �
,�̂22

i ¼ diagf�ð�2� �1Þ�2, �%X, �% �Xg,

�̂�
21

ij ¼
��l
ijþ

��l
ji

��T
ij

��T
ji Cij Cji

h i
,

�̂22¼diagf�2ð�2� �1Þ�2X, �%X, �%X, �% �X, �% �Xg,

�̂31
ij ¼

�ijH
T
i 0 %�ijH

T
i 0

E1iX 0 E2iX 0

� 	T
,

�̂33
ij ¼ diagf��ijI��ijIg,

��11¼AiXþXAT
i þBi

��YjþYT
j

��TBT
i þ

�Q1þ �Q2� t1X,

��13¼AdiX� �N1ijþ �M1ij,

��22¼�t1X� �Q1þ �N2ijþ �NT
2ij,

��23¼� �N2ijþ �M2ijþ �NT
3ij,

��33¼� �N3ij� �NT
3ijþ

�M3ijþ �MT
3ij,

�ij¼ AiXþBi
��Yj 0 AdiX 0

� �
,

Cii¼ C1ij, . . . ,Cmij

� �
,

Clij¼ �lBiClYj 0 0 0
� �T

,

%¼ �21t1þð�2� �1Þt2
�X¼diagfX, . . . ,X|fflfflfflffl{zfflfflfflffl}

m

g,

��1
ij¼ ð�2� �1Þ

�Mij, ��2
ij¼ ð�2� �1Þ

�Nij:

Proof: Defining X ¼ P�1, then applying the congru-
ence transformation diagfX,X,X,X, X,X, �X, I, Ig to
Equation (31), and setting �Ri ¼ XRiXði ¼ 1, 2Þ,
�Qi ¼ XQiX ði ¼ 1, 2Þ, �Mij ¼ XMlijX ðl ¼ 1, 2, 3, 4Þ,
�Nij ¼ XNlijXðl ¼ 1, 2, 3, 4Þ, Yj ¼ KjX, and �ij ¼ "

�1
ij ,

Ri ¼ tiPði ¼ 1, 2Þ, we obtain that Equation (33) is
equivalent to Equation (31).

With a procedure similar to the above,
Equation (32) is the sufficient condition for guaran-
teeing Equation (34).

Remark 5: From Theorem 2, it can be seen that the
solvability of LMIs (33) and (34) depend not only on
�1, �2, but also on the distribution of the actuator-fault
distribution in a given interval. More information is
taken into account in our results compared to the usual
fault modeling method mentioned in Section 1.

4. Illustrative examples

In this section, two well-studied examples are used to
illustrate the effectiveness of the approaches proposed
in this article.

Example 1: Consider the system (29) with the follow-
ing parameters (Lien et al. 2007, Li et al. 2009):

A1 ¼
�2 0

0 �0:9

� 	
, A2 ¼

�1 0:5

0 �1

� 	
,

Ad1 ¼
�1 0

�1 �1

� 	
, Ad2 ¼

�1 0

0:1 �1

� 	
:

From Table 1, we can see the improvement due to
the methods introduced in this article. It can be
concluded that the obtained results are less
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conservative than those of Lien et al. (2007) and Li

et al. (2009) in this example.

Example 2: Consider the following time-varying
delay system (3) with the parameters (He et al. 2009):

A1 ¼
0 1

0:1 �2

� 	
, A2 ¼

0 1

0 �0:5� 1:5�

� 	
,

Ad1 ¼Ad2 ¼
0:1 0

0:1 �0:2

� 	
, B1 ¼B2 ¼

0

1

� 	
, �¼

0:01

�
,

H1 ¼H2 ¼
1 0

0 0

� 	
, E11 ¼E12 ¼

0 0:15

0 0:1

� 	
,

E21 ¼E22 ¼
0:1 0

0:2 0:1

� 	
,

h1 ¼ 1�
1

1þ expð�3ðx2=0:5��=2ÞÞ

� 
1�

1

1þ expð�3ðx2=0:5þ�=2ÞÞ

� 
, h2 ¼ 1� h1,

and 0:015 �ðtÞ5 3. The following two cases are

considered to illustrate the effectiveness of the reliable

fuzzy controller when considering the actuator failure

occurrence. The standard controller is obtained by
assuming the system is normal, and the reliable fuzzy

controller is derived while considering actuator failure.

Case 1: We assume the actuators are normal, that is,

the parameter � of fault model (5) has expectation
�� ¼ 1 and variance D ¼ 0, respectively. According to

Theorem 2 with t1 ¼ 0:26, t2 ¼ 1:2, we obtain

K1 ¼ �0:7371 �0:4181
� �

,

K2 ¼ �0:7114 �0:7893
� �

:

Case 2: Assuming that the actuator-fault distribution

is given by �� ¼ 0:3, D ¼ 0:2, that is, there exist partial
actuator failure and fluctuations. According to

Theorem 2 with t1 ¼ 0:26, t2 ¼ 1:2, we get

K1 ¼ �3:6758 �2:2136
� �

,

K2 ¼ �3:7694 �3:6883
� �

:

With the initial conditions xðtÞ ¼ ½1:8 � 0:5�T

ðt 2 ½�2 0�Þ, we assume the stochastic actuator failure

described in Case 2 occurs in the interval [4s–35s].

Figure 1 shows the state response when the system has

a standard fuzzy controller, while Figure 2 for a

reliable fuzzy controller. It is clear that both the

controllers perform very satisfactorily when no failures

occur [35s–60s]. Also, it is observed that when an

actuator fault occurs, the closed-loop system with the

standard controller is not even asymptotically stable,

while the closed-loop system using the reliable

controller still operates well and maintains an

acceptable level of performance.

5. Conclusions

In this article, a new practical actuator-fault model is

proposed. We concentrate on the reliable control

design problem for a class of T-S fuzzy model based

on nonlinear time-varying delay systems, and present a

reliable control design methodology to achieve closed-

loop stability, not only when the system is operating

properly, but also in the presence of certain

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t(sec)

x(
t)

Figure 1. State response under standard controller.

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t(sec)

x(
t)

Figure 2. State response under reliable controller.

Table 1. Comparison results for Example 1.

Methods �1 0 0.4

Lien et al. (2007) �2 0.831 0.889
Li et al. (2009) �2 0.982 1.038
Our results �2 1.265 1.267
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actuator failures. Numerical examples are given to
illustrate the design procedures.

Nomenclature

R
n n-dimensional Euclidean space

R
n�m the set of n � m real matrices
T matrix transposition

X4 0 the matrix X is real symmetric positive
definite

X � 0 the matrix X is real symmetric positive
semi-definite

�k k the Euclidean vector norm
E xf g the expectation of stochastic variable x�
A B
� C

�
a symmetric matrix
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